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Abstract. Immunotherapy refers to the use of natural and synthetic substances to
stimulate the immune response. This paper provides a description for an adaptive
locally optimal control design for immunotherapy cancer treatment mathematical
model, where all state vector is considered to be not on-line available. The control
strategy is suggested in two stages: the first one deals with the state estimation
process using differential neural networks technique. The second part introduces the
construction for a locally optimal control function based on the DNN mathematical
representation. This technique was successfully applied in the tracking process for
immunotherapy dosage control.

1. Introduction

1.1. Neural Networks with Differential Representation

The increasing demand of technology requires different approaches to solve control
and identification problems of nonlinear systems. The neural networks (NN) promise
better solutions in some problems. The control applications of NN are motivated for the
necessity to treat more complex systems, to find new adaptive control methods and to
regulate systems affected by external uncertainties. Roughly speaking, the NN can be
classified as follows: static one, using mainly the back-propagation technique [1], and
dynamic (or recurrent) neural networks which applies differential learning laws or
dynamic (recurrent) ones [2]. Nowadays the neural networks employment in several
science fields, as pattern recognition, image processing, industrial process, biological
systems and automatic control engineering, has increase the interest to develop new
approaches that could improve the results obtained until today. One of these new kinds
of dynamic neural networks is the differential neural networks (DNN) which has been
applied successfully in many identification, estimation and control techniques. such as
non-parametric estimation for diabetes mellitus illness [3], fermentative process [4]. [5]
and Human Immunodeficiency Virus dynamics as well [4]. This approach permits to
avoid many problems related to global extreme search converting the leaming
(training) process to an adequate state feedback design. The DNN-approach provides
an effective instrument to attack a wide spectrum of problems such as identification,
state estimation, trajectories tracking, if the mathematical model of a considered
process is incomplete or partially known, [1]. Considering all these previous papers and
the well studied identification and control theory developed in [7], a novel cancer
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treatment control technique is suggested in order to obtain a slightly improvement i,

the illness evolution.

1.2. A brief review on robust output feedback control

Research on adaptive output feedback control of unccrlajn non-linear.dyn.amic systems
is of paramount importance today. particularly considering the growing interest in the
use of unconventional control devices such as chemical sensors. plezoelcctr{c actuators,
etc. In a large number of practical problems there are ifnponant dns.turbances,
uncertainties or several parameter variations. In these situations, a solution of the
control problem is given by the. so-called, unconventional adaptive control supplied by
a mechanism to adjust the controller’s parameters. In the case of only one single output
measurement, the existing works show semi-global results for a class of systems whose
non-linearities depend on the unmeasured variable, [8] and [9]. If the non-linearity
depends on output measured variables, the published papers suggcsl a mechanism
which can achieve global results only for a class of parametric output-feedback
systems. By the adaptive observer backstepping technique, a self-adjusted output
feedback controller can be designed for a class of parametric output-feedback form
[10] guarantying asymptotic tracking of the reference signal while keeping bounded all
signals (states and control). The observer based-control is a way to solve the output
feedback control problem that imposes a restriction in the possibility to use all the
states directly for feedback control design. Still for linear systems, this allows to
discompose the problem in two sub-problems that can be solved separately: a) by
designing a state observer and b) by designing a controller based on the on-line state
estimates. This approach is known as the Separation Principle. However, in non-linear
systems, this principle is not well justified [11].

In the context of the non-linear systems, adaptive controllers that ensure good
tracking performance (and disturbance rejection) of signals that corresponds to
bounded solutions of known non-linear time variant systems are not clearly established.
The suggested solutions for this problem are based on the internal model principle
wherein the "dynamics" of the reference signal (and disturbances) are incorporated in
the plant dynamics via an adequate chosen pre-filter or pre-compensator. For this
study, such pre-filter going to be design as a "internal" differential neural network

whose states (X, ) will be used by the controller structure to reproduce the non-linear

system dynamics (represented by the supplied differential neural network observer) and
then to "adjust” the control function in order to follow the reference trajectories. Using

the following definitions: Xt is the current state of an uncertain system, ,?f is the
current slate estimation generated by DNN observer (DNNO) which is shown to be

closeto X1 (thatis. X, ~ £, by means of a special Lyapunov-like function), X; is the
internal model state of the neural controller which is closed to ﬁ: (that is, X; ~X)
and x, is the state of a reference model. In this paper, the following fact going to be

demonstrated: X, ~ %' ~X, ~ X, . This means that the application of a control, which
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solves the problem (3’, ~ x,'), for an initial uncertain system with states X at the

same time guarantees that x, ~ X, .

2. System description and basic assumptions

Let's consider the class of perturbed non-linear systems with incomplete information

(not all the state vector is assumed to be available) described by the set of ordinary
differential equations

X, =f(x,,u,',1)+ Sii» Y, =Cx, &, )

where x, € R" s the system state vector, y, € R” s the system output vector,

u; € R” s the control action belonging to a specific admissible set U™ that will

be define below. C e€R™ s an a priory known output matrix. The uncertain

vectors &, and &,, represent the state and output deterministic external bounded

(unmeasurable) disturbances (”f “ SY, A, >0, j=1 2) . Hereafter it is
Rl A =TT ’ ’

supposed the non-linear function in (1) satisfies the Lipschitz property (uniform on ¢
and for all possible systems belonging to the non-linear systems class given above):

"f(x, u',t)— f(z,v',t}| S Lfx-2+ L,|u -v'“
”f(O,O,t]l2 <C; 0=<L,L, <o x,yeR"; u" v eR"

2)

The last assumption automatically implies the ODE solution existence and uniqueness
2 2 .
and. obviously, the following property f(x,,u, ,1) 2C,+Cuxl +CH

that is valid for any x, « and . Besides the unperturbed (.f,', =4,, = 0) non-linear

Y

system (1) is assumed to be stable, that is, there exists a Lyapunov function V(x,)

. d —
fulfilling the following inequality d— V(x, <—A and using (2) then the next
x

!
expression is valid <4 V(X,)S —2[5 sk 62 x,||'J - Notice that (1) "always" could be

rearranged as

x.‘I = f;)(x’,ll;,l I 9([))+ -7l.l + §l,l

~

Jid = f(x,,u,',t)—fo(x,u',lIG(I)) o
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where f (x, u',t| @(I)) will be referred like "nominal dynamics" that can be selecyg

according to designer desires; and f, is a vector defined like the "no modey, d

dynamics". Here, the set of parameters @(I ) are subjected to adjustment (this is the S0-

called training process) in order to obtain the best possible. accuracy in the noming
representation (a DNN representation, for example). According to DNN approach (n
the nominal dynamics is defined by X

fo(x’”"’ | ®)= A'x+W,_',0'(x)+ Wz'./(”(x)”" @ =AW, W, eR™

W e R, o()e R, Wy, eR™,0()e R (4)

The admissible control set for u,' (at least for the estimation process, without any
feedback control design) is supposed to be bounded:

U =u": 93} A =AL S0 )

.2
Ju
Al

The activation vector-functions O ()‘= [O’ j(-)};l;_l, (0() = [(01.,‘ (-)};zi:";hl}, are

usually composed with smooth monotonically growing functions. As usual, the
selected activation functions are sigmoid ones:

o) a;;[1 4, exp(-icmx,)

J=1

; ©)
o} (x) = a;,{] +b, exp(— Gy j]
J=1

It is easy to proof they satisfy the sector conditions ||a(x)—0'(x']|z <, ”x —x'[l2
and ‘((o(x)—(p(x'))u " L x—x'jzvf . In view of (2) the following upper bound
for the no modelled dynamics 7,', takes place:

“7’"”/\/ < ;,.0 +7L,||x,“;], A, = AT/ >0,A; = A’} >0 )

3. DNN training algorithm

The lr.aining process for the DNN algorithm is associated with the off-line best possible
selection (before the begging of the state estimation) of the nominal parameters

© =|4",W,,W,,| using experimental data (x,‘,u,k ) Notice that the
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corresponding rate-vectors X, are not available. In view of the nominal dynamics

selection, the following procedure could be applied in order to define the parameter
which going to be used in the non-linear output feedback controller design.

DNN trainer.

In order to define the training process, all the vector state and the control
action (x,‘ U,

could be measurable in specific times 1, (by direct experimentation),
but the exact mathematical structure about the vector field f(x,,u,',f) is partially

unknown (the order of the system and its stability properties are a priory assumed). A
special nonparametric identifier (based on DNN properties) will be applied to derive an

approximation of this non-linear model. The mathematical description of this neural
trainer is given by:

d

~ ~ ~ ~ . Al
Ex, =Ax, +W, c(X)+ W, p(Xu; + KA, + K, —-.

] .
Here A, = i, —X, € R" is the identification error between the system states to be
identified and the corresponding DNN variables, i, € R" is the state of the neural
network, X, are reconstructed versions of X, and u, respectively using classical
interpolation algorithms [12], 4 € R™” is a stable matrix (maybe diagonal or upper
triangular) which elements going to be selected below. W, e R"* is the weight
matrix for non-linear "state feedback" and W,, € R™ is the "input” weight matrix;

both matrices will be adjusted using a special learning law dcscribcd'by mal'rix
differential equations. The vector field o(x,):N" - N* and the matrix function

@(-) have the same meaning and structure that (6). In view of the neural network

structure (8), it can be classified as a Hopfield-type [1]. K, and K, are constants
matrices which have the same function like correction terms in observc.:rs structure
[13]. These two additional terms were added following the results derived in [11]
where a significant reduction in the upper bound for the convergence process was
obtained. Taking into account that the elements of o(-) and @(-) are chosen as
sigmoid functions. the following assumption are easily fulfilled.
As.1: The functions & (*) and @(-) satisfy the Lipschitz condition:

I o - y o

G/A,0, <N DA, c'Z 0 <x'C,x,
VY ~7 ~ 2 AT N =75 ~ . 2.7 )
(u,) o, N,pu; <viA DA, (u,) @, Z, 0, =vi%, C %,

&, =olt)-olx), 4, =¢&)-4(x)

sndi AN AN D D7, Z4,C,,C, are know positive definite matrices. The

&)
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identifier design requires the next important assumption:

As.2. There exist a strictly positive defined matrix Q 0 such that the Riccati equation

ATP+PA+PRP+0=0 (10)
>0, where R=A-fl+ "VI‘IA;I(VVI.I)T i

has a positive solution P =P g
Wz..:A-v:(Wz.‘/)?“lL KIA-llKl? +K2A_2|K27+A.,:, and 0=D,+vD,+ A+ Qo. 1ip
the weights W

the algebraic Riccati equation has positive definite solution, -

j=1,2 are adjusted by
4y 9w --Kk,PAQ

draa g :
=o(z), Q, =0 ), K,>0,W, =W, -W,,

(I
Q

The training process could be abstracted in the following:

Theorem 1. Let 's consider the partially unknown non-linear system (1) and a model
matching neural network (8) whose weights are adjusted by the matrix differential
equations (11), and also the assumptions As./ and As.2 hold, then the upper bound (in
average sense) for the identification (training) error is described by

Pr

Lol s £ e

0,
Gor = /?'min(P—HZQOP_”z)> 0, pr =fot ””Az" +7,

The identification error sign term in (8) is introduced to apply the robustness settings
on sliding mode approach, especially those that can help to solve the parameter
uncertainties in the problem description. This important behaviour could be useful in
this new kind of identifier because in DNN the most difficult problem is to select the
matrix 4. That is why the simultaneous application of DNN and sliding mode
technique seems to be a promising solution to solve the problem to be tackled in this

report.

4. Output feedback DNN controller

Once the DNN has been trained the automatic feedback controller for uncertain
nonlinear system, affected by external perturbations could be designed in two stages.
the first one deals with the state estimator develop using a special class of DNN,
considering the control action as a function depending on the state estimated. The
second section is related with the adaptive control suggestion; in this work three
different methods are applied to solve this problem.
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4.1. DNN Non-Parametric State Estimator

The observer design is going to be maddened using the idcas developed on [11]. So, let
define DNN observer as follows

d . . s . )y e Y -CE

X, = AR} AW, o\X W olx Ju, + Ky, -c2 )+ K T el

dr" ' Lt ( l) 2.:¢( :) ' |(y: :) 2 ")’/ -Cx;'" (13)
Y =Cx;

Here X7 € R"is the state of the neural network observer, W, € R™ andW;,

€ R™" are the corresponding weight matrices for this observer adjusted by the special
updating (learning) law for the estimation process

%W;" =_Kj (Pzil. +PIN5(CTeI +HJNJPIPVIIXJ))XJT

o o=ok) 1, =0 )u,k, >0 (9
N, =C"A, C+A*,A,>0; N, =(cCc” +a1,,)",j=12
2.0 i

P,=P" >0 and P,=P] >0 are positive definite solutions (if they exist) of the
following Riccati equations

PA,+(4,Y P+ BRP+0, =0, h=12 (1)
whose parameters are defined by
4 =(-xc) 4 =4 |
Q, =0°A+8A,+&vl,, + D, +25v, A, +
EVA+ 2];.,';/\; +A,+0,
Ro= w0 + )0 f ko, (Y +a, +A,,
O, =Z,+25v, A, 1427, /A, +E0, A2+ VE AL +EY, A,
R, = KiCNCT(k; Y +kony (kY +kon kT
w2y w2 )

(16)

where K, =X, —X,. So, when ¥, =Cx; , ODE (13) should be attended as a
differential inclusion. Such robust adaptive observer seems 1o be a more advanced

device compared to one containing only a linear (Luenberger type) correclipp term
since it possesses high sensibility within a zone with a small output error. Additionally
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o (*) and @(-) were selected in the same way that (9). Once all the state is available
using the state estimator (13), it is possible to implement the corresponding observed-
state 55, neural identifier and DNN observer state X, , the admissible control set for

u, (7,) should be suggested as an element of the following set

U =, =, =5+l +

This selection for the admissible control allows the independent design for the
controller and the observer (this is referred like a special form of the separation
principle). The following theorem introduces the main result on state estimation

procedure:

A, Ay AL Ay,

Theorem 2. If there exist positive definite matrices Af 5Ny

Ay, Do Ny Ay A,, O,, O, and positive constants 8, k,v, such that the
matrix Riccati equations (15) have positive definite solutions, then the DNN observer-
identifier (11) with any matrix K, guarantying that the close-loop matrix 4" is
stable, that is, 4" = (A‘"" +ch) is Hurwitz (this is possible if and only if the pair
(C, A) is observable) and K, = /1P,"C?,/l > 0 supplied by the learning laws (14)
provides the following upper bound for the controlled-state estimation process:

= P,
C 71'_?3, T :=J; "A/"P, dr < A’min (Pl-uonPl—l/z) 18)
Pr = fro Vi E+E, )+ 4k\/;”§2.r l+ kv +’7I|A;l ”+ 47, + Y,

Bringing together the two stages of control designing, which have been described
above, the main result on the neural- tracking-control of a class of uncertain non-linear
dynamic system subject to state and output external perturbation could be formulated.
Due to the non-linear form on the cancer’s dynamics, the lack of knowledge about the
system structure and the uncertainties presence on the state and output signals, the
control function design could be a slow and difficult process (sometimes impossible),
specially if any performance index optimization or tracking error minimization are
trying to be reached. The differential neural network "modelling" allows defining
tracking controllers using the non-linear structure defined by (10). The next subsection
gives some general solutions to control non-linear uncertain systems affected by

external perturbations.
4.2. Model reference controllers

The control design using the estimated states requires the next definition. Let introduce
the performance index describing the tracking quality as:
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J, = lim sup Tj-("(x, -%)+ (J'é, =% ll; +”u,"2)dl (19)
=0

T

- 2 2 i 2 -1 2 2 .
Using the inequality a+b i (] +& )a " (] + g) b, in (19), the
performance index could be presented as:

7,20 Nim s -2 )+ (- ) +hall et o
1=0 =0

In view of the last expression, the tracking controller could be described by the
L . . T +)2 2
minimization (in any sense) of the third term. L=0( (,?, — X )Q + u, Rjdl. The

optimization procedure was carried out as follows: Lets consider the non-linear system
to be controlled as in (1) and consider, also, a reference model representing the normal

conditions for a healthy patient X, = f(x,,1), X, is fixed where X, is the state
of the reference system, f is a non-linear function fulfilling the Lipschitz condition

with the corresponding constant L . If the tracking process is going to be considered,

the function f could be any which reachable set has a non empty intersection with
that one of non-linear function [14], but if the studied case deals with regulation

problem, the reference system must be purposed as f =0, X,=¢,ceRN”" isa

vector composed by constant elements ¢, i=ln.To complete the control design,
the control action (Ur) going to be made up by two parts
u, = [W;,(D(,{’;)]‘(u,', + uz,/) where %, € R"  could be described as a direct
linearization part, and  u,, € R" will act as a compensation of the tracking no
modeled dynamics. In view of the reference model /}(xl',t),x,' structure, the first
section in the control function is selected as: u, =—[Fo(£‘,,t)—f(x,',1)j where

F, (J?, X t) is obtained by the inverse model representation given for the DNN structure

'é' o Fo(.i',,l)+ FI(A/’,)HI

Fi&0)= 48 + W05+ Koy, -ci ) i 2S5 )

by C’Ql "
F(%,0)=; (%)
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and Y2.t will be designed using the, so-called, Local Optimal Control. Unfortunately
the weights W,", and W, could be not bounded (at least this fact is unknown before
the controller structure is applied). This fact is the main consideration to derive a
inverse model control using an auxiliary dynamics X, constructed as

i =fo(§:”)+ﬂ(}1”)u, where F,(%,,1) and F(%,1) going to be
described below. If this auxiliary dynamic vector converge fast to the DNNO structure,
it is possible to use X, instead £, in the control development (like in the well known
adaptive control based on internal model). Let us define the tracking error between
thisas "artificial” system (X, ) and the reference model ( X, ) as &, =X, — X, . From
the previous definitions, the tracking error time derivative is described by
0, = ﬁo (3‘:, ,’)—f(x:.”)'*' E (:\:, J)ll, . Using this control function, the tracking error

dynamics is presented as: 8, = A8, +u, , + f .1f u,, is able to compensate f.

then the tracking error dynamics is asymptotically stable. The auxiliary dynamics is
governed by the differential equation described (following the suggested DNNO

structure) as

ff;i A% AV, 0E )V, 0% Ju,+ KA, +E,SIGN@B,) @

where A, =% —-X, %,0()eR", go(i’,),V,',,Vz_,,Kl,K2 eNR™".  The

!
parameters involved in this scheme are adjusted using the following matrix differential
equations

dio= ~ B e e =
— V., =—k, (PzAf + Px] ) 75 7, =o®) 7 =0 )u.k, >0 @)

where P3 and P3 are the positive definite solution of the second Riccati equation in
(13) and the following one PA+ A'P+ PR,P+ (O, =0. It easy to proof that

X, ~ X, has a finite upper bound for the auxiliary error A, . So the controller design

could be abstracted by the following:

Theorem 3. [fthe control function u,' is proposed as
le. = [‘Fl (il ”)]+ (uo.l it ul,t)’ uO,I = FO(il ’1)— ¢(’,X,.) (24)

and if Y1t s suggested as u,, = —2R7'P.5, where P s solution for the
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et
Lyapunov function |, then "5'"; +""2'":, 5“7" ’where the semi-norm S s
s Aor

defined by limsup!(’s Ils,dr -

Proof . The proof of this theorem is going to be described in [6].

S. Numerical Results

The cancer term corresponds more than one hundred of different illness. Each of they
have particular characteristics, being able to consider itself independent illness, with
their causes, evolution and specific treatment. The specific method of treatment used is
determined by the cancer's type, stage, and location. There exist several treatments for
this disease: chemotherapy, radiotherapy, surgery, etc. Although development of new
technics of surgery and transplants, more effective drugs and better radiation methods,
often some malignant cells survives to these therapies and disseminates into the
organism (the so-called metastasis process). Recently, treatment efforts implementing
immunotherapy are being investigated [15]. Although, the immunotherapy dynamics is
difficult to be modeled (like many other biological processes), because it has many
uncertainties in its description, it depends strongly on the input function, etc. One
common solution for this problem is to consider this model as a black box, whereas
only input and output information is supposed to be measurable. There are some
theoretical studies that have been forcing into the order to modelling this particular
cancer treatment method [16] The cancer model is based on the immunotherapy

response describing the activated immune or effector cells (Xt ), the tumor cells ( V1

) and /L-2 concentration ( 2t ) in the single tumor-site compartment

X, =cy, = 1,x, + p,x,z-, +us,;
1 <}
i ax,y,
y,=ry,(-by,)- 2, (24)
gZ +y:
5 = prlyl i o
B Vi it

Obviously the main result is devoted to adjust this function in order to reduce the

tumour cells, considering the physiological restrictions given by the each patient under
immunotherapy treatment.

5.1. Control Process results with incomplete information

The first stage in the controller developed is the DNN training process. This is carried
out using some pattern data that usually are obtained using some real experiments or a
database which contains some particular information about the nonlinear system to be
controlled. Unfortunately, there are not on-line sensors that could measure any variable
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related with the immunotherapy treatment. As far as the authors known, there are not a
database which contains the time evolution of the immunotherapy dynamics. That is
the main reason to use an artificial mathematical model of the IL-2 interaction in
patients which are assisted with immunotherapy. as a data generator to be used in the
rest of the document. To guarantee the estimation error convergence "close”
(depending on the perturbations values) to zero, training process for the DNN should
be solved in order to obtain the best possible values for the free-design parameters in
the identification design are adjusted using the learning laws described above. This
adjustment procedure starts with the data set testing for the identifier structure. The
data set is obtained using the mathematical description with a fixed initial condition. So
if a bad performance in the error convergence is obtained, a new set of matrices is used
to test again the identifier. and so on. Besides, the neural networks weights are adjusted

using two matrix differential equations, so it is important the initial weights values

selection.
The control problem for immunotherapy dosage is difficult because the designed

controller should be restricted by real patient settings. In view of this, it is difficult to
suggest any performance index to solve the corresponding optimization problem. In
real situations. the health improvement for the patient is slow and progressive, so the
controller must consider this important medical fact. Both elements recently mentioned
implies the reference model should be designed in order to represent a slightly healthy
condition for the patient. In order to solve the numerical example to evaluate the
capabilities for this method. a modified parameter set for the DNNO corresponding to
the healthy patient has been suggested [16]. The adaptive controller was designed using
the local optimal control. Taking into account the obtained data in the estimation
procedure; it is possible to apply the adaptive control function designed to make non-
linear system dynamics (1) follows the corresponding reference trajectory. This sub-
optimum controllers does not requires the trial and error method to obtain the previous
matrix value. It is solved analytically which ensures there is positive solution for the

Lyapunov ecquation selecting the implicated eigenvalues at 21=2.56><]0—2,

A, =6.34x 107, 4, =3.42x1 072 . The next figure shows the performance for this

observer based-controller considering there is not any mathematical model (this is true
in principle because the same procedure using on-line information or a database
containing such knowledge). It is important to note the total amount of tumour cells has
a significative reduction once the controller was applied (upper right corner). However
the effectors cells are not so affected by the immunotherapy dosage (upper left corner
in ). Another important fact in this controlled process is the important reduction on the
IL-2 concentration in the body (lower left corner) diminishing a possible intoxication
possibility. The control process quality could be evaluated using the performance index
given by (), where the convergence between the immunotherapy model and the
reference one is displayed. This element can be evaluated directly from the tracking
figures. This approach could be used like a dosage predictor which is able to modify
the immunotherapy strategy, this can be done using a computer with a friendly
software which is ready to receive the current data on the IL-2 concentration and then
to suggest the corresponding application period, i.e. if the dosage should be supplied or
not. The last element in the previous figure shows the reference input that has



Local Optimal Control Based on Neural Network Observer States 129

demonstrated the best possible control action to diminish the cancer effects, and the
control function generated by the DNN adaptive controller.

3 «
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Figure 1. Adaptive Neural Control Process results. The figure at the upper right corner shows the
effector cells tracking performance. It is important to note the close relationship between both
variables. The same results can be attained for tummor cells and IL-2 concentrations. The last
graph demonstrated the reference input (suggetsted by physician) estimation given by the
DNNC.

6. Conclusions

In this paper a new model-free neural control is suggested and analyzed. It consists in
robust approach application to control a simplified model of a differential neural
network observer that represents a model of an uncertain non-linear system to be
controlled. The upper bound for the averaged tracking error is established if the local
optimal neural control be applied. The control of the real immunotherapy process for
cancer treatment is considered. These results suggested the possible application in real
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medical procedures.
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